SUSTAINING THE WORLD THROUGH SCIENCE AND TECHNOLOGY
Planthopper Bibliography Database
List
148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 « Previous Next »
152 of 617
Authors Year Title Journal | |
---|---|
8085 | Kartohardjono, A., T. Tersyana, T., R.W. Atmadja, and Nursasongko. 1991 Role of Cyrtorhinus sp. predator as biological control of brown planthopper in rice field. In: J. Sujitno, D. Kilin, Hs. Suprapto, and U. SutrisnoGunara, (eds.). Research on brown planthopper (Nilaparvata lugens Stal.) in 1987/88. Balai Penelitian Tanaman Pangan Bogor. Edisi Khusus 2. Bogor, Indonesia. Pp. 54-63 |
2567 | Klein, M. 1992 Role of Circulifer/Neoaliturus in the transmission of plant pathogens. Advances in Disease Vector Research 9: 151-193. |
13108 | YANG, Wen-Jia, Kang-Kang XU, Yi YAN, Can LI, and Dao-Chao JIN. 2020. 2020 Role of Chitin Deacetylase 1 in the Molting and Metamorphosis of the Cigarette Beetle Lasioderma serricorne. International Journal of Molecular Sciences 21(7): 2449; 1-15. https://doi.org/10.3390/ijms21072449. (ePub article# 2449, 15 pp.) [Nilaparvata lugens] pdf |
11949 | Jiang, Y.Y. and X.D. Lin. 2018 Role of ABC transporters White, Scarlet and Brown in brown planthopper eye pigmentation. Comparative Biochemistry and Physiology B - Biochemistry & Molecular Biology 221: 1–10. https://doi.org/10.1016/j.cbpb.2018.04.003. |
9413 | Boito, G.T. and J.A. Ornaghi. 2008 Rol de los cereales de invierno y su sistema de manejo en la dinámica poblacional de Delphacodes kuscheli, insecto vector del MRCV. Agriscientia 25(1): 17-26. pdf |
9525 | Henderson, R. 2011 Robertson's Flightless Planthopper (Fitchiella robertsoni). Wisconsin DNR Species Status Assessment Worksheet. Madison, Wisconsin. 10 Pp. pdf |
6140 | Eubanks, M.D., M.J. Raupp, and D.L. Finke . 2011 Robert F. Denno (1945–2008): Insect Ecologist Extraordinaire. Annual Review of Entomology 56(1): 273-292. |
13194 | SHEN, Yan, Yan‐Zhi CHEN, and Chuan‐Xi ZHANG. 2020 RNAi‐mediated silencing of ferritin genes in the brown planthopper Nilaparvata lugens affects survival, growth and female fecundity. Pest Management Science (2020): (PrePrint, 31 pp.). https://doi.org/10.1002/ps.6026. |
13962 | YE, Chenglong, Yalin FENG, Feifei YU, Qiqi JIAO, Jiangen WU, Zihong YE, Pengjun ZHANG, Chuanxin SUN, Kun PANG, Peiying HAO, and Xiaoping YU. 2021 RNAi-mediated silencing of the autophagy-related gene NlATG3 inhibits survival and fecundity of the brown planthopper, Nilaparvata lugens. Pest Management Science 77(10)): 4658-4668. https://doi.org/10.1002/ps.6507. |
15465 | Xavier, C.A.D., C. Tyson, L.M. Kerner, and A.E. Whitfield. 2024 RNAi-mediated knockdown of exportin 1 negatively affected ovary development, survival and maize mosaic virus accumulation in its insect vector Peregrinus maidis. Insect Molecular Biology 33: 295-311. https://doi.org/10.1111/imb.12910. |
12108 | XU, Lu, Chun-Qing ZHAO, De-Jin XU, Guang-Chun XU, Xiao-Long XU, Zhao-Jin HAN, Ya-Nan ZHANG, and Zhong-Yan GU. 2017 RNAi suppression of nuclear receptor genes results in increased susceptibility to sulfoxaflor in brown planthopper, Nilaparvata lugens Journal of Asia-Pacific Entomology 20(2): 645-653. https://doi.org/10.1016/j.aspen.2017.03.022. |
13709 | YANG, Qun, Kristof De SCHUTTEr, Pengyu CHEN, Els J.M. Van DAMME, and Guy SMAGGHE. 2021 RNAi of the N-glycosylation-related genes confirms their importance in insect development and [alpha]-1, 6-fucosyltransferase plays a role in the ecdysis event for the hemimetabolous pest insect Nilaparvata lugens. Insect Science (2021): (PrePrint, 9 pp.). https://doi.org/110.1111/1744-7917.12920. |
10225 | Yang, Y., P.J. Wan, X.X. Hu, and G.Q. Li. 2014 RNAi mediated knockdown of the ryanodine receptor gene decreases chlorantraniliprole susceptibility in Sogatella furcifera. P esticide Biochemistry and Physiology 108: 58-65. |
11005 | Zhang, Y.X., L.Q. Ge, Y.P. Jiang, X.L. Lu, X. Li, D. Stanley, Q.S. Song, and J.C. Wu. 2015 RNAi knockdown of acetyl-CoA carboxylase gene eliminates jinggangmycin-enhanced reproduction and population growth in the brown planthopper, Nilaparvata lugens. Scientific Reports 5: DOI: 10.1038/srep15360. pdf |
13682 | DIVYA, Dhanasekar, Nihar SAHU, P. Sairam REDDY, Suresh NAIR, and J.S. BENTUR. 2021 RNA-sequencing reveals differentially expressed rice genes functionally associated with defense against BPH and WBPH in RILs derived from a cross between RP2068 and TN1. Rice 14(1): 27; 1-21. https://doi.org/10.1186/s12284-021-00470-3. |
14373 | SATTURU, Vanisri, Hima Bindu KUDAPA, Pandiyan MUTHURAMALINGAM, Rama Gopal Varma NADIMPALLI, Jhansi Lakshmi VATTIKUTI, C. ANJALI, Lakkakula SATISH, Manikandan RAMESH, and Sreedhar MULINTI. 2021 RNA-Seq based global transcriptome analysis of rice unravels the key players associated with brown planthopper resistance. International Journal of Biological Macromolecules 191: 118-128. https://doi.org/10.1016/j.ijbiomac.2021.09.058. |
13981 | TIAN, Shuping, Nan WU, Lu ZHANG, and Xifeng WANG. 2021 RNA N6-methyladenosine modification suppresses replication of rice black streaked dwarf virus and is associated with virus persistence in its insect vector. Molecular Plant Pathology 22(9): 1070-1081. https://doi.org/10.1111/mpp.13097. https://doi.org/10.1111/mpp.13097. [Laodelphax striatellus] |
15441 | MA, Yun-Feng, Ting-Ting LIU, Ya-Qin ZHAO, Juan LUO, Hong-Yan FENG, Yang-Yuntao ZHOU, Lang-Lang GONG, Meng-Qi ZHANG, Yin-yin HE, J. Joe HULL, Youssef DEWER, Ming HE, and Peng He. 2024 RNA interference-screening of potentially lethal gene targets in the white-backed planthopper Sogatella furcifera via a spray-induced and nanocarrier-delivered gene silencing system. Journal of Agricultural and Food Chemistry 72(2): 1007-1016. https://doi.org/10.1021/acs.jafc.3c05659. |
10784 | Jia, S., P.J. Wan, L.T. Zhou, L.L. Mu, and G.Q. Li. 2015 RNA interference-mediated silencing of a Halloween gene spookier affects nymph performance in the small brown planthopper Laodelphax striatellus. Insect Science 22(2): 191-202. DOI: 10.1111/1744-7917.12087. |
10954 | Wan, P.J., L. Yang, S.Y. Yuan, Y.H. Tang, Q. Fu, and G.Q. Li. 2015 RNA interference-aided knockdown of a putative saccharopine dehydrogenase leads to abnormal ecdysis in the brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Bulletin of Entomological Research 105(4): 390-398. DOI: 10.1017/S0007485315000231. |
12814 | LIU, Shu-Hua, Bao-Jun YANG, Ai-Ying WANG, Ju LUO, and Jian TANG. 2020 RNA interference of tyrosine hydroxylase caused rapid mortality by impairing cuticle formation in Nilaparvata lugens (Hemiptera: Delphacidae). Pest Management Science 76(6): 2225-2232. https://doi.org/10.1002/ps.5760. |
13510 | WANG, Guang, Yuping GOU, Sufan GUO, Jing?Jiang ZHOU, and Changzhong LIU. 2021 RNA interference of trehalose-6-phosphate synthase and trehalase genes regulates chitin metabolism in two color morphs of Acyrthosiphon pisum Harris. Scientific Reports 11: 948; 1-12. https://doi.org/10.1038/s41598-020-80277-2. [Nilaparvata lugens] |
10542 | Liu, S., Q.M. Liang, W.W. Zhou, Y.D. Jiang, Q.Z. Zhu, H. Yu, C.X. Zhang, G.M. Gurr, and Z.R. Zhu. 2015 RNA interference of NADPH-cytochrome P450 reductase of the rice brown planthopper, Nilaparvata lugens, increases susceptibility to insecticides. Pest Management Science 71(1): 32-39. pdf |
12035 | Fang, Ying, Jae Yong Choi, Seok Hee Lee, Jong Hoon Kim, Dong Hwang Park, Min Gu Park, Ra Mi Woo, Bo Ram Lee, Woo Jin Kim, Shuo Li and Yeon Ho Je 2017 RNA interference of E75 nuclear receptor gene suppresses transmission of rice stripe virus in Laodelphax striatellus. Journal of Asia-Pacific Entomology 20(4): 1140–1144. https://doi.org/10.1016/j.aspen.2017.08.011. |
6705 | Li, J., Q.H. Chen, Y.J. Lin, T.R. Jianag, G. Wu and H.X. Hua. 2011 RNA interference in Nilaparvata lugens (Homoptera: Delphacidae) based on dsRNA ingestion. Pest Management Science 67(7): 852-859. pdf |