SUSTAINING THE WORLD THROUGH SCIENCE AND TECHNOLOGY
Planthopper Bibliography Database
List
220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 « Previous Next »
224 of 604
Authors Year Title Journal | |
---|---|
9569 | Kempiak, G. 1972 Beiträge zur Kenntnis der durch Javesella pellucida (F.) übertragbaren Gramineenkrankheiten. Friedrich-Schiller-Universität Jena, Jena, Germany. Thesis. |
10346 | He, H.P., G.L. Zhong, G. Xia, and F.R. Wang. 2007 Spot clothing wax cicada occurrence and prevention measures in the grapes on the Wuhan area. Friends of Fruit 2007(3): 36 & plate 4. pdf |
12598 | Menz, M.H.M., D. R. Reynolds, Boya Gao, Gao Hu, J. W. Chapman and K. R. Wotton. 2019 Mechanisms and Consequences of Partial Migration in Insects. Frontiers in Ecology and Evolution 7: 403; 1-9. http://dx.doi.org/10.3389/fevo.2019.00403. (ePub Article #403, 9 pp.) pdf |
13121 | KANG, Changku, Hyun-Joon CHO, Sang-Im LEE, and Piotr G. JABLONSKI. 2016 Post-attack aposematic display in prey facilitates predator avoidance learning. Frontiers in Ecology and Evolution 4: 35; 1-9. https://doi.org/10.3389/fevo.2016.00035. (ePub Article# 35, 9 pp.) pdf |
14005 | ZHAO, Zhengxue, Lin YANG, Jiankun LONG, Zhimin CHANG, Zhengxiang ZHOU, Yan ZHI, Liangjing YANG, Hongxing LI, Yongjin SUI, Nian GONG, Xiaoya WANG, and Xiangsheng CHEN. 2021 Endemism patterns of planthoppers (Fulgoroidea) in China. Frontiers in Ecology and Evolution 9: 683722; 1-9. https://doi.org/10.3389/fevo.2021.683722. pdf |
14994 | Maguire, B., J. Tomasula, T. Rippel, G.M. Wimp, and M.B. Hamilton. 2023 Sea level rise-induced habitat loss does not alter effective migration rate for the salt marsh insect Tumidagena minuta due to large genetic effective population size. Frontiers in Ecology and Evolution 11: 1160232; 1-9. https://doi.org/10.3389/fevo.2023.1160232. |
14021 | Jones, C.M., S. Jones, A. Petrasova, V. Petras, D. Gaydos, M.M. Skrip, Y. Takeuchi, K. Bigsby, and R.K. Meentemeyer. 2021 Iteratively forecasting biological invasions with PoPS and a little help from our friends. Frontiers in Ecology and the Environment 19(7): 411-418. https://doi.org/10.1002/fee.2357. [Lycorma delicatula] |
13647 | CHEN, Hao-Hao, Yi-Lai LIU, Xin-Yang LIU, Jin-Li ZHANG, and Haijun XU. 2020 Functional analysis of nuclear factor Y in the wing-dimorphic planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). Frontiers in Genetics 11: 585320; 1-10. https://doi.org/10.3389/fgene.2020.585320 |
14529 | ISHWARYA LAKSHMI, V.G., M. SREEDHAR, V. JHANSILAKSHMI, C. GIREESH, Santosha RATHOD, Rajaguru BOHAR, Santosh DESHPANDE, R. LAAVANYA, K.N.S. Usha KIRANMAYEE, Sreedhar SIDDI, and S. VANISRI. 2022 Development and validation of diagnostic KASP markers for brown planthopper resistance in rice. Frontiers in Genetics 13: 914131; 1-17. http://dx.doi.org/10.3389/fgene.2022.914131. |
14640 | DU, Linlin, Bo ZENG, Xuejuan LI, Ying LAN, Wei GUO, Zhaoyun WANG, Zhiyang LIU, Yijun ZHOU, Kumar Kunda JIBAN, and Tong ZHOU. 2023 An improved method to efficiently acquire rice black-streaked dwarf virus viruliferous small brown planthoppers. Frontiers in Genetics 14: 1111030; 1-6. https://doi.org/10.3389/fgene.2023.1111030. |
13553 | HE, Yu-Juan, Gang LU, Yu-Hua QI, Yan ZHANG, Xiao-Di ZHANG, Hai-Jian HUANG, Ji-Chong ZHUO, Zong-Tao SUN, Fei YAN, Jian-Ping CHEN, Chuan-Xi ZHANG, and Jun-Min LI. 2021 Activation of Toll immune pathway in an insect vector induced by a plant virus. Frontiers in Immunology 11: 3494; 1-11. https://doi.org/10.3389/fimmu.2020.613957. [Laodelphax striatellus] pdf |
14549 | Gomez-Marco, F. and M.S. Hoddle. 2022 Effects of freezing Lycorma delicatula egg masses on nymph emergence and parasitization by Anastatus orientalis. Frontiers in Insect Science 2: 937129; 1-11. http://dx.doi.org/10.3389/finsc.2022.937129. |
14550 | Nixon, L.J., S. Jones, A. C. Dechaine, D. Ludwick, M. Hickin, L. Sullivan, J.E. Elsensohn, J. Gould, M. Keena, T. Kuhar, D.G. Pfeiffer, and T.C. Leskey 2022 Development of rearing methodology for the invasive Spotted Lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae). Frontiers in Insect Science 2: 1025193; 1-11. https://doi.org/10.3389/finsc.2022.1025193. pdf |
14551 | Faal, H., L.R. Meier, I.J. Canlas, K. Murman, M. Wallace, D. Carrillo, and M.F. Cooperband. 2022 Volatiles from male honeydew excretions attract conspecific male spotted lanternflies, Lycorma delicatula (Hemiptera: Fulgoridae). Frontiers in Insect Science 2: 982965; 1-20. https://doi.org/10.3389/finsc.2022.982965. pdf |
14552 | LIU, Houping. 2022 Oviposition selection in spotted lanternfly: Impact of habitat and substrate on egg mass size and hatchability. Frontiers in Insect Science 2: 932433; 1-12. https://doi.org/10.3389/finsc.2022.932433. pdf |
14553 | Islam, M.T., C. Kudla-Williams, S. Kar, J.P. Londo, M. Centinari, and C. Rosa. 2022 Deciphering genome-wide transcriptomic changes in grapevines heavily infested by spotted lanternflies. Frontiers in Insect Science 2: 971221; 1-14. https://doi.org/10.3389/finsc.2022.971221. pdf |
14554 | Cooperband, M.F. and K. Murman. 2022 Responses of adult spotted lanternflies to artificial aggregations composed of all males or females. Frontiers in Insect Science 2: 981832. https://doi.org/10.3389/finsc.2022.981832. pdf |
14610 | Gómez-Marco, F., D. Yanega, M. Ruiz Valdés, and M.S. Hoddle. 2023 Proactive classical biological control of Lycorma delicatula (Hemiptera: Fulgoridae) in California (US): Host range testing of Anastatus orientalis (Hymenoptera: Eupelmidae). Frontiers in Insect Science 3: 1134889; 1-19. http://dx.doi.org/17.10.3389/finsc.2023.1134889. pdf |
14629 | Broadley, H.J., S.J. Sipolski, D.B. Pitt, K.A. Hoelmer, X.Y. Wang, L.M. Cao, L.A. Tewksbury, T.J. Hagerty, C.R. Bartlett, A.D. Russell, Y. Wu, S.C. Davis, J.M. Kaser, J.S. Elkinton, and J.R. Gould. 2023 Assessing the host range of Anastatus orientalis, an egg parasitoid of spotted lanternfly (Lycorma delicatula) using Eastern US non-target species. Frontiers in Insect Science 3: 21; 1-14. https://doi.org/10.3389/finsc.2023.1154697. pdf |
14676 | Lewis, P., A. Davila-Flores, and E. Wallis. 2023 An effective trap for spotted lanternfly egg masses. Frontiers in Insect Science 3: 1154510. https://doi.org/10.3389/finsc.2023.1154510. pdf |
14695 | Laveaga, E., K. Hoover, and F.E. Acevedo. 2023 Life history traits of spotted lanternfly (Hemiptera: Fulgoridae) when feeding on grapevines and tree of heaven. Frontiers in Insect Science 3: 1091332; 1-11. https://doi.org/10.3389/finsc.2023.1091332. |
14700 | LIU, Houping, Xiaoyi WANG, and Miriam COOPERBAND. 2023 Focus on Spotted Lanternfly. Frontiers in Insect Science 3: 1292590; 1-4. https://doi.org/10.3389/finsc.2023.1292590. pdf |
14706 | WU, Yunke, Hannah J. BROADLEY, Kendra A. VIEIRA, John J. MCCORMACK, Corrine A. LOSCH, Hyeban NAMGUNG, Yeongmo KIM, Hyojoong KIM, Alana R. MCGRAW, Marjorie Z. PALMERI, Seunghwan LEE, Liangming CAO, Xiaoyi WANG, and Juli R. GOULD. 2023 Cryptic genetic diversity and associated ecological differences of Anastatus orientalis, an egg parasitoid of the spotted lanternfly. Frontiers in Insect Science 3: 1154651; 1-11. https://doi.org/10.3389/finsc.2023.1154651. |
14712 | Keena, M.A., G. Hamilton, and D. Kreitman. 2023 The potential climatic range of spotted lanternfly may be broader than previously predicted. Frontiers in Insect Science 3: 1092189. https://doi.org/10.3389/finsc.2023.1092189. |
14713 | BAO, Ke-xin, Xiao-yi WANG, Liang-ming CAO, Bei XIN, Hannah J. BROADLEY, and Juli R. GOULD. 2023 Effects of transgenerational photoperiod experience on the reproduction and development of Anastatus orientalis, an egg parasitoid of the spotted lanternfly. Frontiers in Insect Science 3: 1153723. https://doi.org/10.3389/finsc.2023.1153723. |