SUSTAINING THE WORLD THROUGH SCIENCE AND TECHNOLOGY
Planthopper Bibliography Database
List
518 | 519 | 520 | 521 | 522 | 523 | 524 | 525 | 526 « Previous Next »
522 of 611
Authors Year Title Journal | |
---|---|
4186 | Stewart, A.J.A. 2002 Techniques for sampling Auchenorrhyncha in grasslands. In: W. Holzinger, (ed.). Zikaden: Leafhoppers, Planthoppers, and Cicadas (Insecta: Hemiptera: Auchenorrhyncha). Denisia 4: 491–512. pdf |
5354 | Xian, X.Q., B.P. Zhai, X.X. Zhang, X.N. Cheng, and J.Q. Wang. 2007 Teleconnection between ENSO indices and the early immigration of brown planthopper: Implication for its medium- and long-term forecast. Acta Ecologica Sinica 27(8): 3144-3154. pdf |
7184 | Xian, X.Q., B.P. Zhai, X.X. Zhang, G.F. Zhang, Z.L. Liu, and B.G. Shi. 2007 Teleconnection between Pacific sea surface temperature and the early immigration of brown planthopper (Nilaparvata lugens Stal) in the Yangtze and Yangtze-Huai River Valley of Jiangsu Province and its possible mechanism. Acta Entomologica Sinica 50(6): 578-587. pdf |
13006 | Goode, A.B.C., C. R. Minteer, P.W. Tipping, E. Pokorny, R.J. Valmonte, J.R. Foley, and B.K. Knowles. 2020 Temperature dependent survival and fecundity of Lepidelphax pistiae Remes Lenicov (Hemiptera: Delphacidae), a potential biological control agent of Pistia stratiotes L. (Araceae). Biocontrol Science and Technology 30(4): 396-401. https://doi.org/10.1080/09583157.2020.1713299 |
13645 | Vattikuti, J., V. Sailaja, Y.G. Prasad, G.R. Katti, P.M. Chirutkar, G. Ramachandra Rao, A. P. Padmakumari, C.H. Padmavathi, and M. Prabhakar. 2019 Temperature driven development of the rice brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae). Journal of Agrometeorology 21(2): 131-140. |
8060 | Okumura, T. 1965 Temperature relationships of the development and the mortality of eggs and larvae of the brown planthopper, Nilaparvata lugens, when their parent was conditioned with different environmental conditions. Japanese Journal of Ecology 15(6): 237-241.[Japanese] pdf |
14588 | Lewkiewicz, S.M., S. De Bona, M.R. Helmus, and B. Seibold. 2022 Temperature sensitivity of pest reproductive numbers in age-structured PDE models, with a focus on the invasive spotted lanternfly. Journal of Mathematical Biology 85(3): 29; 1-37. https://doi.org/10.1007/s00285-022-01800-9. |
8392 | Salim, M. and R.E. Saxena. 1991 Temperature stress and varietal resistance in rice: effects on whitebacked planthopper. Crop Science 31(6): 1620-1625. |
5010 | Zhu, Z.R., J.A. Cheng, and X. Chen. 1994 Temperature-dependent clutch size of white-backed planthopper. Entomological Knowledge 31(2): 70. |
10139 | Park, C.G., K.H. Kim, H.H. Park, and S.G. Lee. 2013 Temperature-dependent development model of white backed planthopper (WBPH), Sogatella furcifera (Horvath) (Homoptera: Delphacidae). Korean Journal of Applied Entomology 52(2): 133-140. pdf |
5545 | Mokhtar, A.M., and S.S. Al Nabhani. 2010 Temperature-dependent development of dubas bug, Ommatissus lybicus (Hemiptera: Tropiduchidae), an endemic pest of date palm, Phoenix dactylifera. European Journal of Entomology 107(4): 681-685. pdf |
13149 | Horgan, F.G., A. Arida, G. Ardestani, and M.L.P. Almazan. 2020 Temperature-dependent oviposition and nymph performance reveal distinct thermal niches of coexisting planthoppers with similar thresholds for development. PloS ONE 15(6): e0235506; 1-29. https://doi.org/10.1371/journal.pone.0235506. (ePub Article# e0235506, 29 pp.) [Nilaparvata lugen] pdf |
13813 | JEONG, In Hong, A-Young KIM, Phuong NGUYEN, Deok Ho KWON, and Young Ho KOH. 2021 Temperature-independent increase in the detoxifying enzyme activity of insecticide-resistant small brown planthoppers and Drosophila. Journal of Asia-Pacific Entomology 24(1): 70-76. https://doi.org/10.1016/j.aspen.2020.11.009. |
2830 | Lindblad, M. and P. Areno. 2002 Temporal and spatial population dynamics of Psammotettix alienus, a vector of wheat dwarf virus. International Journal of Pest Management 48(3): 233-238.http://www.tandfonline.com/loi/ttpm20 |
14423 | Cavigliasso, P., N. Messina, C.G. Barreto, L. Roman, N.V. Bulacio Cagnolo, and G.A. Rodriguez. 2022 Temporal dynamics of Epormenis cestri Berg (Hemiptera: Flatidae) and its association with the landscape components of the Entre Rios Littoral. [Dinámica temporal de Epormenis cestri Berg (Hemiptera: Flatidae) y su asociación con los componentes del paisaje del Litoral entrerriano]. Revista de la Sociedad Entomológica Argentina 81(1): 41-51.https://doi.org/10.25085/rsea.810104. |
9472 | Elder, R.J., J.R. Milne, D.J. Reid, J.N. Gutherie and D.M. Persley. 2002 Temporal incidence of three phytoplasma-associated diseases of Carica papaya and their potential hemipteran vectors in central and south-east Queensland. Australasian Plant Pathology 31: 165-176. pdf |
11251 | Sun, Z., Z. Liu, W. Zhou, H.A. Jin, H. Liu, A.M. Zhou, A.J. Zhang, and M.Q.Wang. 2016 Temporal interactions of plant - insect - predator after infection of bacterial pathogen on rice plants. Scientific Reports 6: 26043. DOI: 10.1038/srep2604. pdf |
7293 | Zhou, H.D., Q. Pei, X.H. Yan, H. Liu, Z.L. Wang, X.G. Liu, and Z.M. Zhao. 2010 Temporal niches of brown planthopper and white-backed planthopper and their natural enemies. Journal of Southwest China Normal University (Natural Science Edition) 35(5): 80-86. |
5085 | Baric, S. and J. Dalla Via. 2007 Temporal shifts of Bois Noir phytoplasma types infecting grapevine in South Tyrol (Northern Italy). Vitis Vitis 46(1): 101–102. pdf |
2831 | Lindblad, M. and R. Sigvald. 2004 Temporal spread of wheat dwarf virus and mature plant resistance in winter wheat. Crop Protection 23(3): 229-234. |
11547 | Liao, X., Mao, K.K., Ali, E., Zhang, X.L., Wan, H. and Li, J.H. 2017 Temporal variability and resistance correlation of sulfoxaflor susceptibility among Chinese populations of the brown planthopper Nilaparvata lugens (Stal). Crop Protection 102: 141-146. https://doi.org/10.1016/j.cropro.2017.08.024. |
12581 | Yang, Haibo, Junfeng Dong, Zhenjie Hu, Dingxu Li, Fan Fang and Baoping Zhai. 2019 Temporary inhibition of positive phototaxis in emigratory population of nilaparvata lugens by mark-release-recapture. PLoS One 14(9): e0222214; 1-16. http://dx.doi.org/10.1371/journal.pone.0222214. (ePub Article #e0222214, 16 pp.) pdf |
11142 | LI, Dan‐Ting, Yi‐Ting DAI, Xuan CHEN, Xin‐Qiu WANG, Ze‐Dong LI, Bernard MOUSSIAN, and Chuan‐Xi ZHANG. 2020 Ten fatty acyl‐CoA reductase family genes were essential for the survival of the destructive rice pest, Nilaparvata lugens. Pest Management Science 76(7): 2304-2315. https://doi.org/10.1002/ps.5765. |
13946 | PARK, Bia, Gyu-Won KANG, Geun-Myeong SONG, Guk-Hyang KO, Duk-Young PARK, and Jong-Wook LEE. 2017 Ten newly recorded species of insect on Dokdo Island, South Korea. Journal of Species Research 6(3): 280-290. [Laodelphax striatellus, Sogatella furcifera, Sogatella kolophon, Unkanodes sapporonus] pdf |
6692 | Sun, X.L., X.M. Cai, G.C. Wang, Y. Gao, D.Q. Wang, and Z.M. Chen. 2011 Tendency to different colors by Ricaniidae insects in tea garden. Journal of Tea Science 31(2): 95-99. |